Linear Regression and Gradient Descent

Souptik Barua

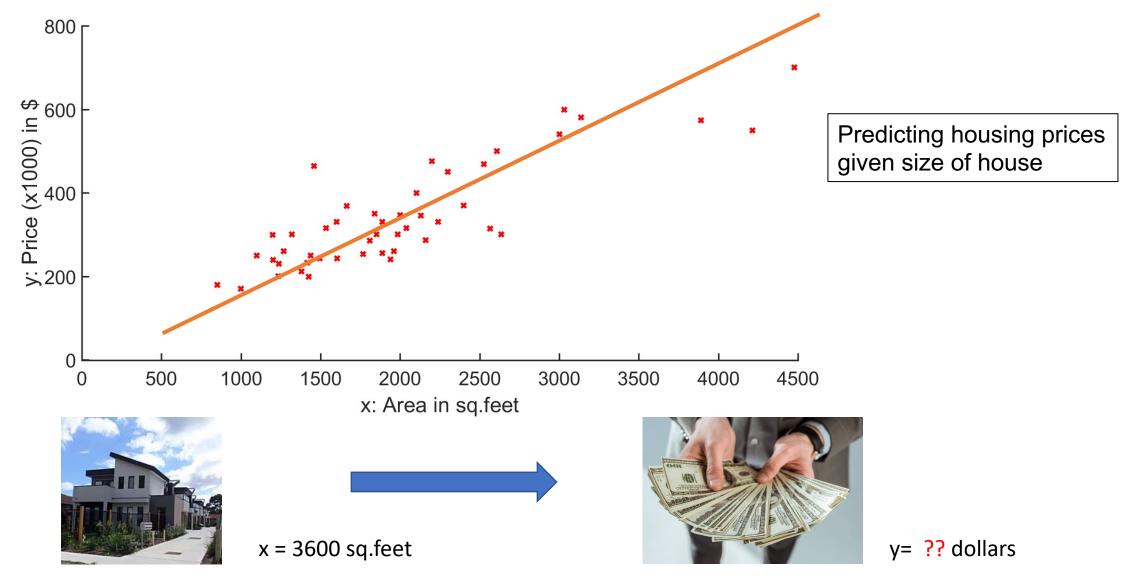
PATHS-UP Course module

Part I: Linear regression

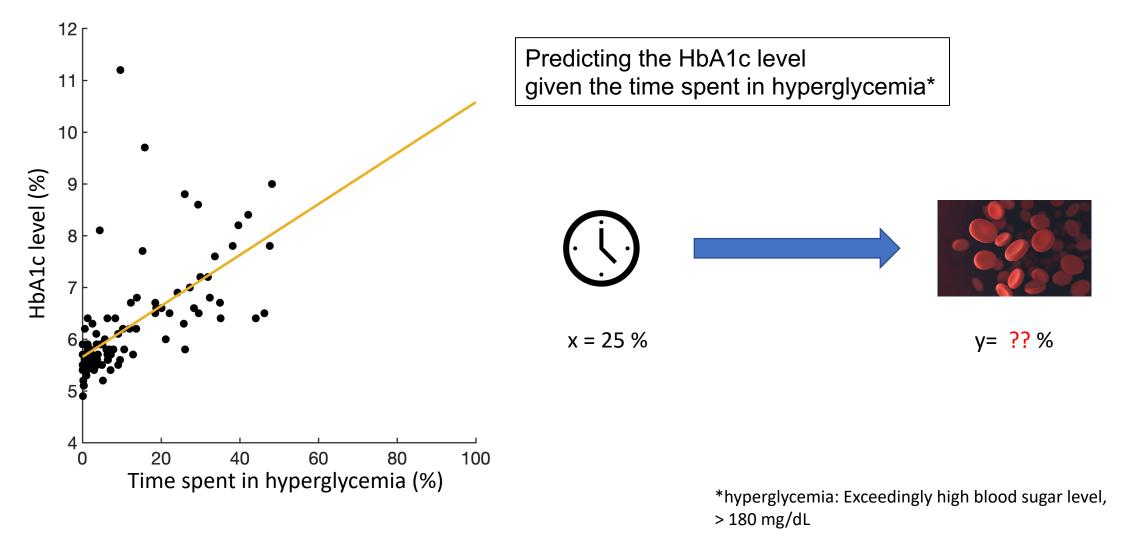
Overview of linear regression

- Linear regression is a statistical analysis technique to model the relationship between a 'response' variable and several 'predictor' variables.
- Linear regression is widely used in computational biology research to quantify the relationship between a clinical outcome (response) and several potential explanatory variables (predictor), in two major ways:
 - **Prediction:** Goal is to predict clinical outcome of interest, e.g. the HbA1c level of a diabetes patient given their age, weight, waist circumference, daily carb intake, and time spent in post-meal hyperglycemia.
 - Identifying key associations: Goal is to identify which explanatory variables have a statistically significant relationship with the clinical outcome of interest, which improves understanding of the physiology of a disorder or condition. E.g., if the HbA1c is significantly associated with the time spent in post-meal hyperglycemia, it shows the importance of diet in diabetes management.

A real-world linear regression problem-I



A real-world linear regression problem

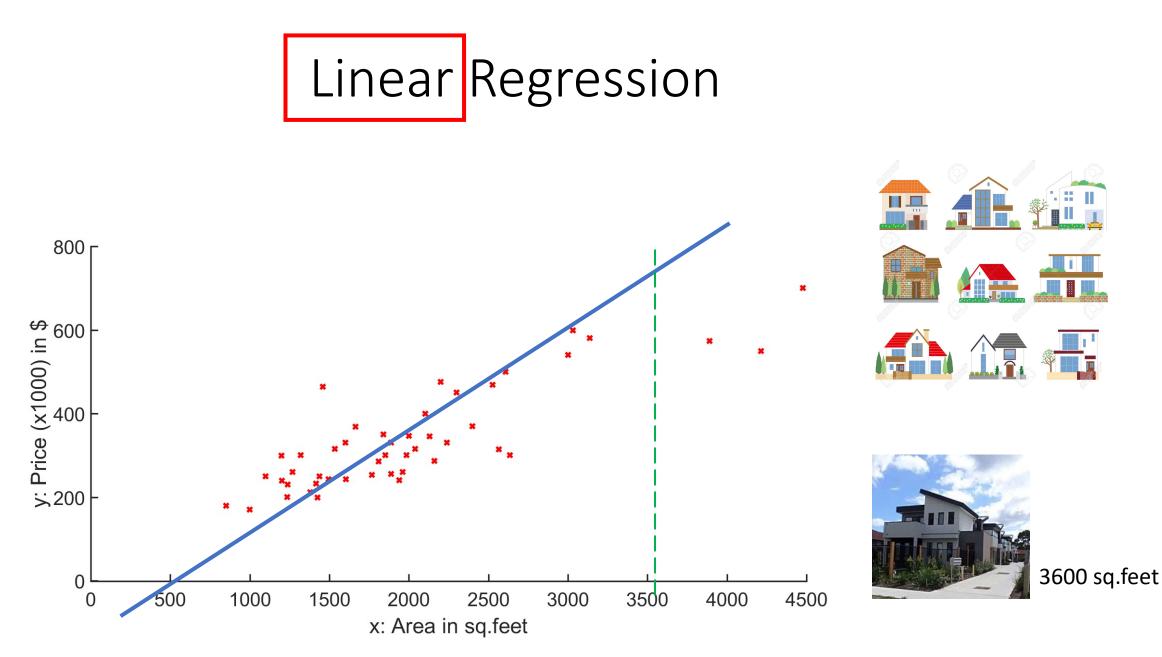


Regression: When the output you are trying to estimate or predict is a continuous-valued number

For e.g: Price of a house, or HbA1c level of an individual with diabetes

Classification: When the output you are trying to estimate or predict is a categorical quantity

For e.g: Cats vs Dogs image classification, or level of risk (High, moderate, or low) for an individual with diabetes



Created by Souptik Barua (2019) at Rice University. All rights reserved. Do not redistribute without permission from the creator. Email: souptikbarua@gmail.com

A real-world linear regression problem

x: Area in square feet	y: Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232
3000	539
•••	

Housing prices dataset (Portland, OR)

Notation: **n**: Number of examples **x**: Input variable/ features/ predictors **y**: Output variable/ target/ response

Dataset from https://www.kaggle.com/kennethjohn/housingprice

A real-world linear regression problem

x: Area in square feet	y: Price (x1000) in \$
 2104	399
1600	329
2400	369
1416	232
3000	539

Housing prices dataset (Portland, OR)

Notation: **n:** Number of examples **x:** Input variable/ features/ predictors **y:** Output variable/ target/ response A specific example shall be denoted as:

 $(x^{(i)}, y^{(i)})$ Where *i* indicates the row number

For example $x^{(1)} = 2104; y^{(1)} = 399$

Dataset from https://www.kaggle.com/kennethjohn/housingprice

Quiz: Notation

Consider the data set shown below. What is $y^{(3)}$?

Area in square feet	Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232

(a) 2400

(b) 1416

(c) 369

(d) 232

Quiz: Notation

Consider the data set shown below. What is $y^{(3)}$?

x: Area in square feet	y: Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232

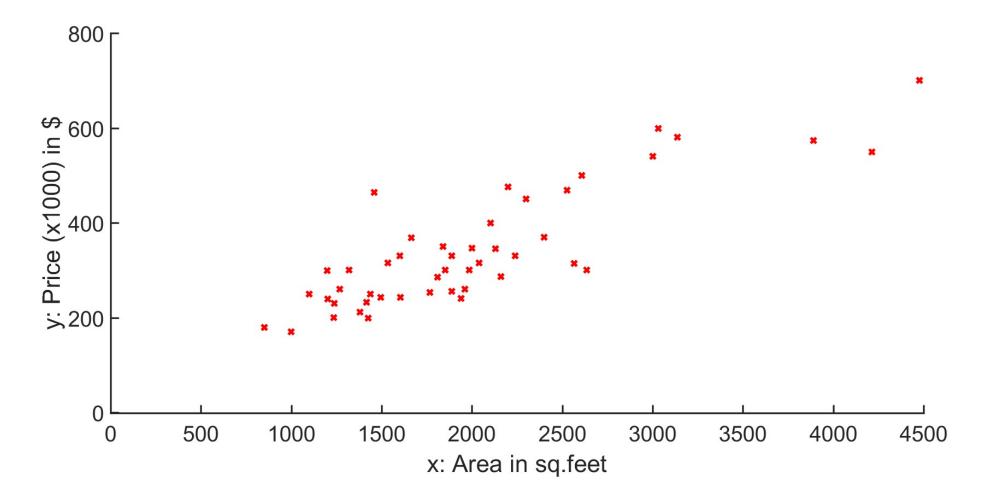
(a) 2400

(b) 1416

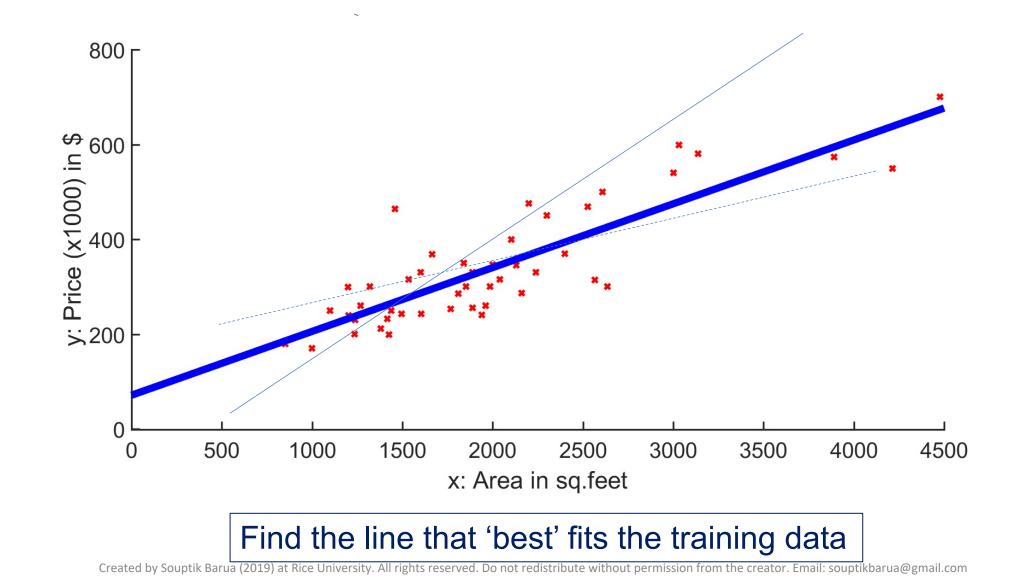
(c) 369

(d) 232

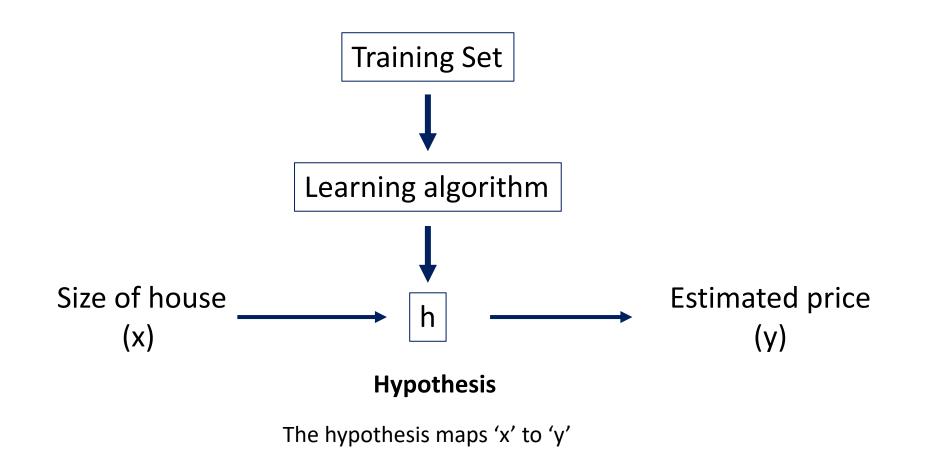
A real-world linear regression problem



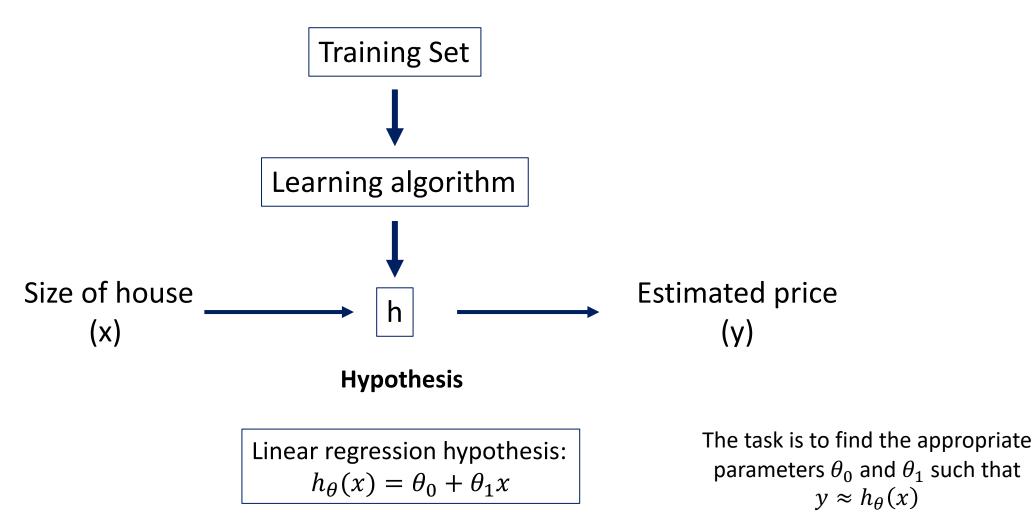
A real-world linear regression problem



The framework



The framework



Solving the linear regression problem

x: Area in square feet	y: Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232
3000	539
	•••

Housing prices dataset (Portland, OR)

Notation: **n**: Number of examples/observations **x**: Input variable/ features/ predictors **y**: Output variable/ target/ response

Solving the linear regression problem

x: Area in square feet	y: Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232
3000	539

Housing prices dataset (Portland, OR)

Hypothesis:

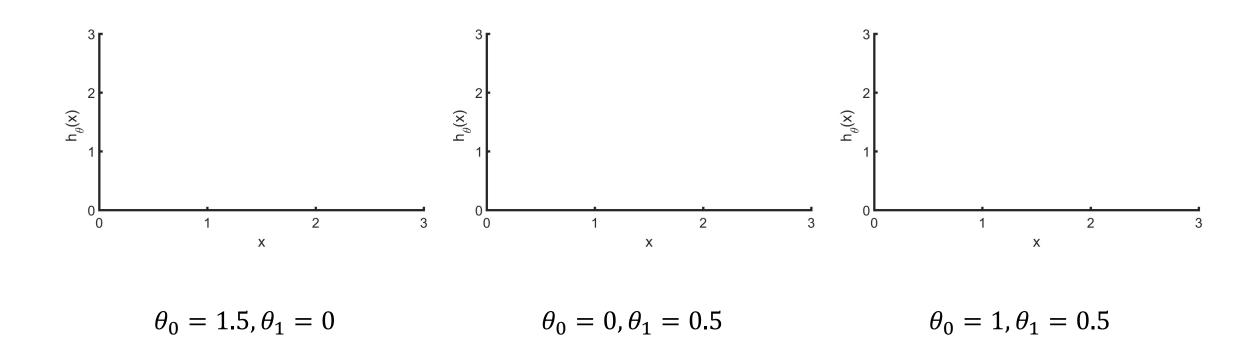
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ refers to the parameters $[\theta_0, \theta_1]$

Dataset from https://www.kaggle.com/kennethjohn/housingprice

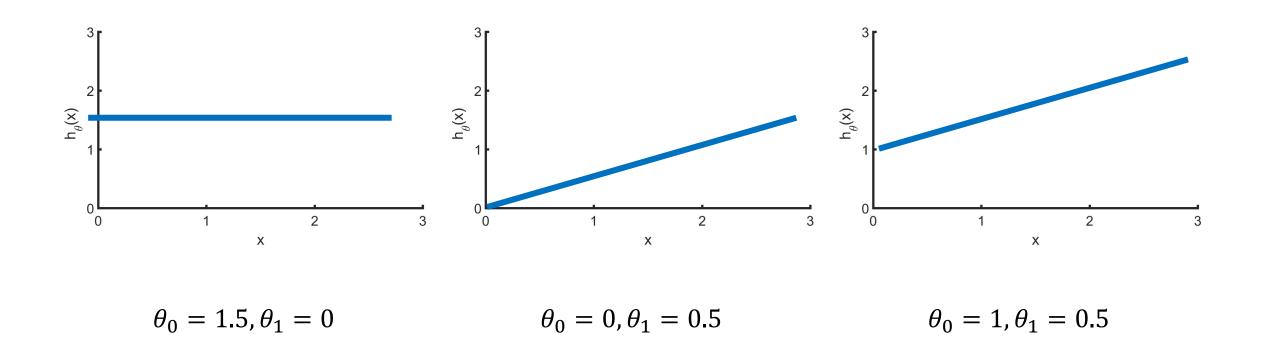
Different straight lines using different heta

 $h_{\theta}(x) = \theta_0 + \theta_1 x$



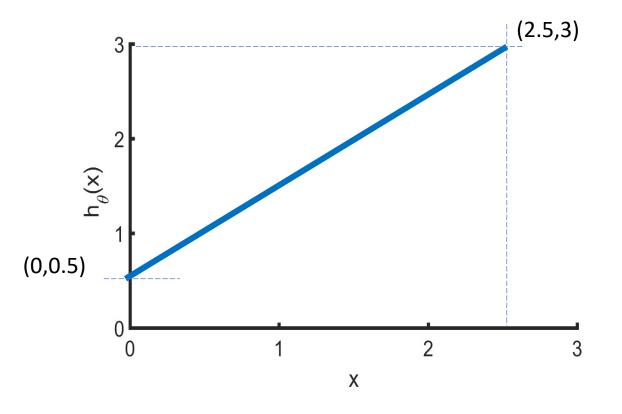
Different straight lines using different heta

 $h_{\theta}(x) = \theta_0 + \theta_1 x$



Quiz: Different straight lines using different heta

An example plot of $h_{\theta}(x) = \theta_0 + \theta_1 x$ is shown. What are the values θ_0 and θ_1 ? (a) $\theta_0 = 0, \theta_1 = 1$ (b) $\theta_0 = 0.5, \theta_1 = 1$ (c) $\theta_0 = 1, \theta_1 = 0.5$ (d) $\theta_0 = 0.5, \theta_1 = 1.2$



Quiz: Different straight lines using different heta

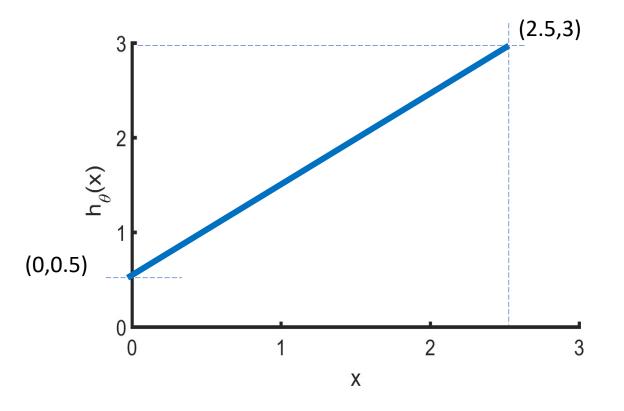
An example plot of $h_{\theta}(x) = \theta_0 + \theta_1 x$ is shown. What are the values θ_0 and θ_1 ?

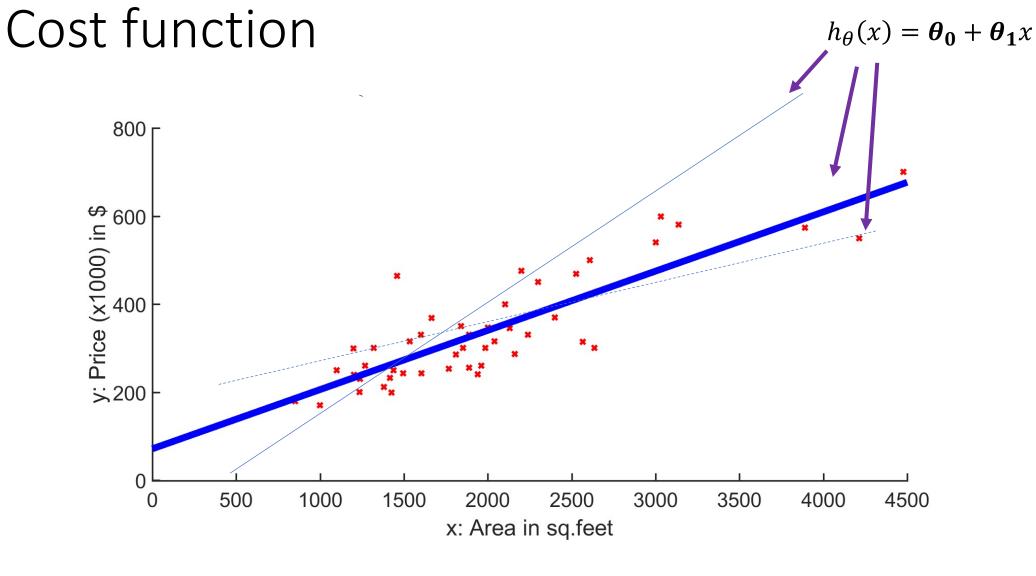
(a)
$$\theta_0 = 0, \theta_1 = 1$$

(b) $\theta_0 = 0.5, \theta_1 = 1$

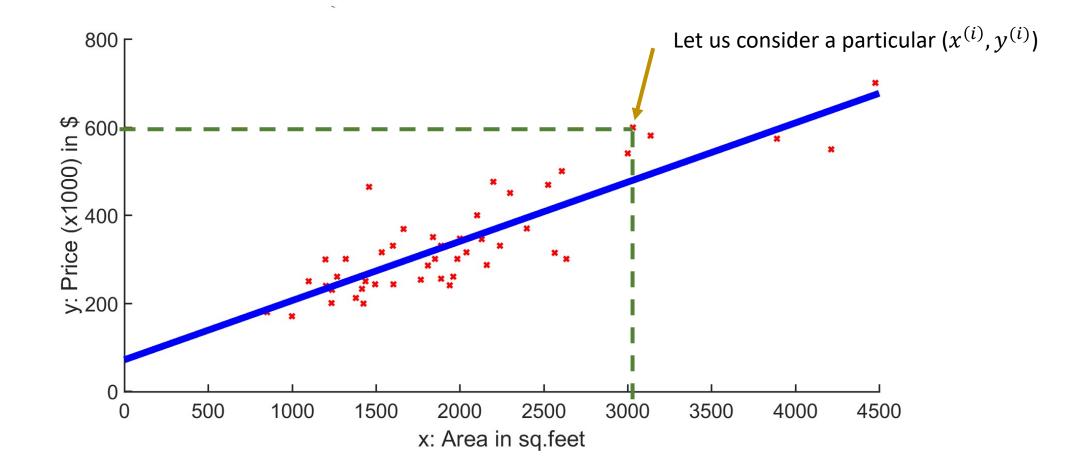
(c)
$$\theta_0 = 1, \theta_1 = 0.5$$

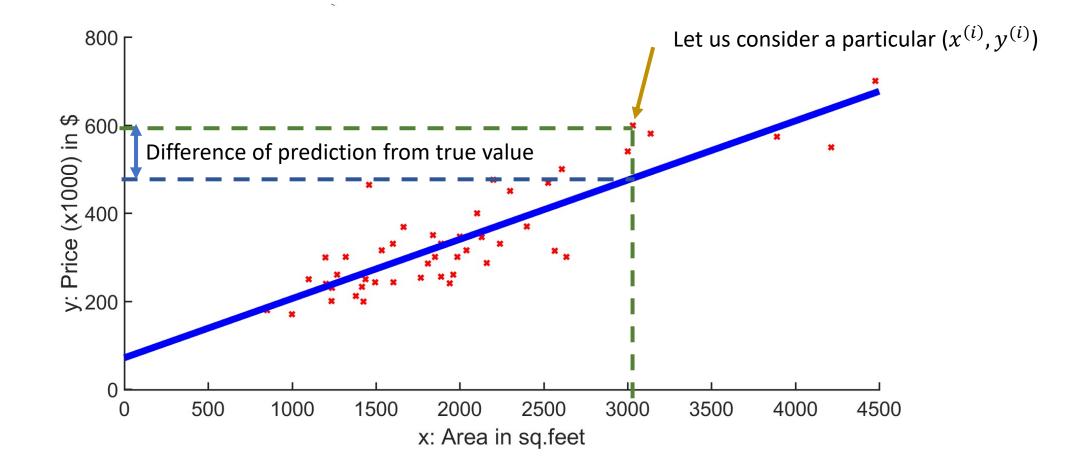
(d) $\theta_0 = 0.5, \theta_1 = 1.2$





All the lines are hypotheses with different choices of θ_0 and θ_1





Cost of prediction for each observation = $(h_{\theta}(x^{(i)}) - y^{(i)})^2$ Prediction True value

Total Cost of predictions for the whole training set = $\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Simply add all the individual costs!

Cost of prediction for each observation = $(h_{\theta}(x^{(i)}) - y^{(i)})^2$

Total cost of predictions for the whole training set = $\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Linear regression cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

An averaged form of the total cost

Cost of prediction for each observation = $(h_{\theta}(x^{(i)}) - y^{(i)})^2$

Total cost of predictions for the whole training set = $\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Linear regression cost function:

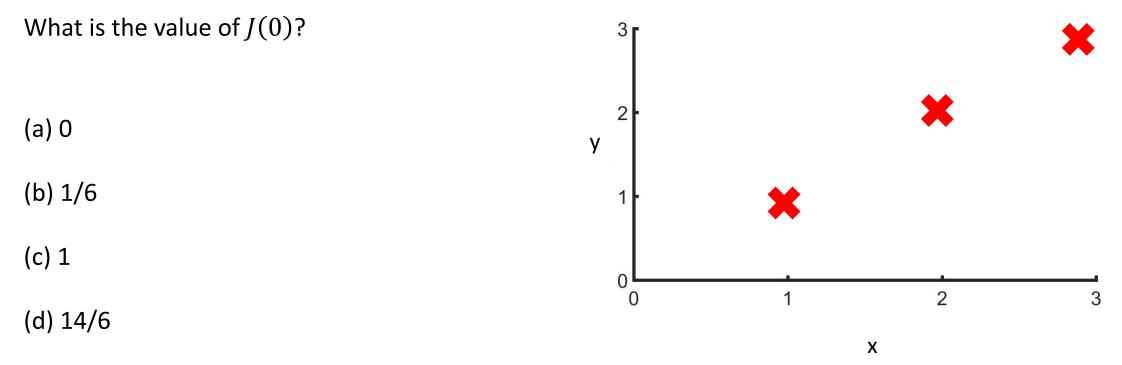
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Find the values of θ_0 and θ_1 that minimize this cost function

Quiz: Cost function

Suppose we have a training set with three observations as shown. Let $\theta_0 = 0$ for now so:

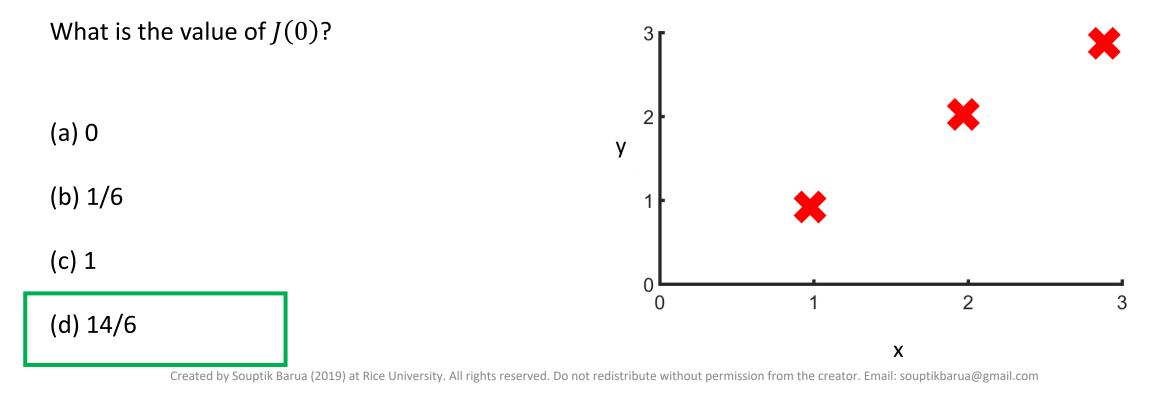
- -- Our hypothesis becomes $h_{\theta}(x) = \theta_1 x$.
- -- The cost function then becomes $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)})^2$

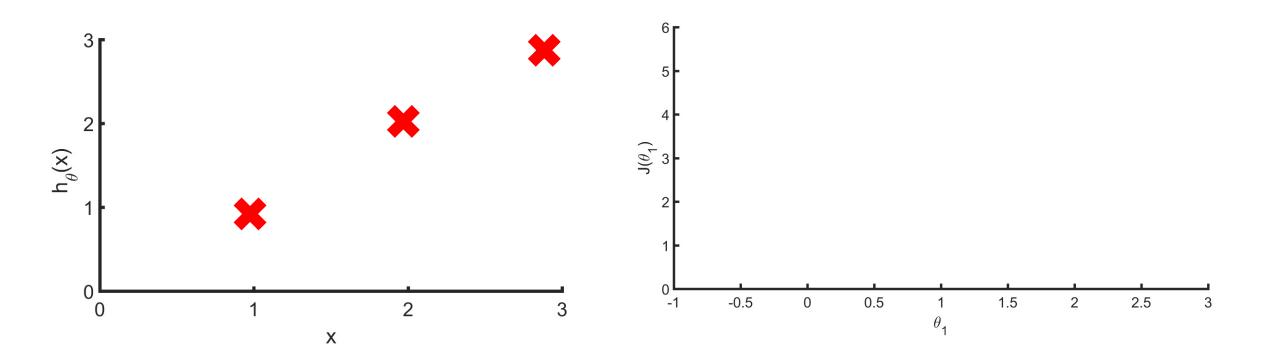


Quiz: Cost function

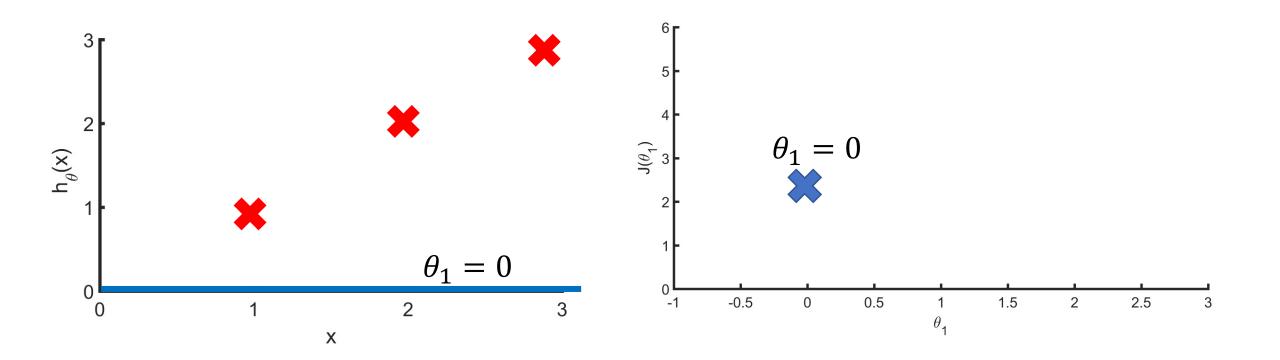
Suppose we have a training set with three observations as shown. Let $\theta_0 = 0$ for now so:

- -- Our hypothesis becomes $h_{\theta}(x) = \theta_1 x$.
- -- The cost function then becomes $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)})^2$

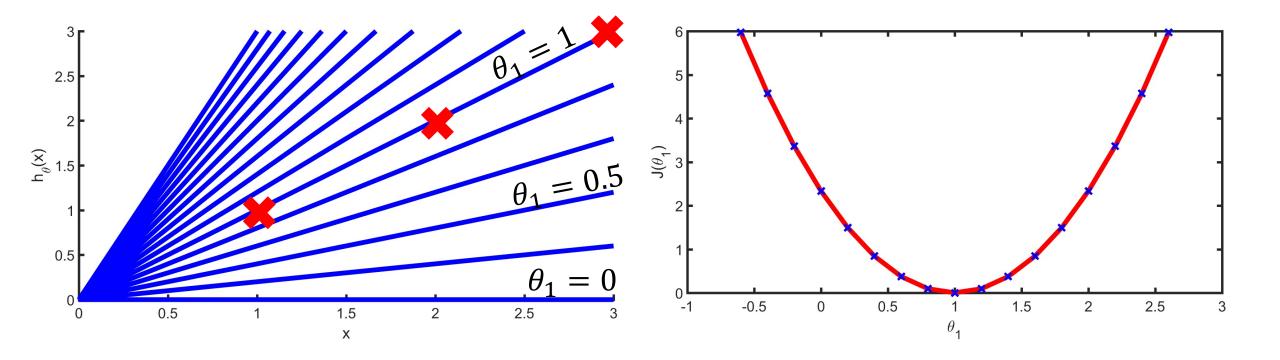




How does the cost function change with different choices of θ_1 ?



How does the cost function change with different choices of θ_1 ?



Plotting the different hypotheses and cost function values as a function of θ_1

Learning outcomes - I

By the end of part I, you now know how to:

- -- Formulate a linear regression **hypothesis**: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- -- Understand intuitively what the **parameters** represent: θ_0 and θ_1
- -- Understand what a **cost function** is and why the linear regression cost function is formulated as: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$
- -- The main **computational goal** to generate our linear regression model: $\min_{\substack{\theta_0, \theta_1}} I(\theta_0, \theta_1)$

Next class

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0 and θ_1

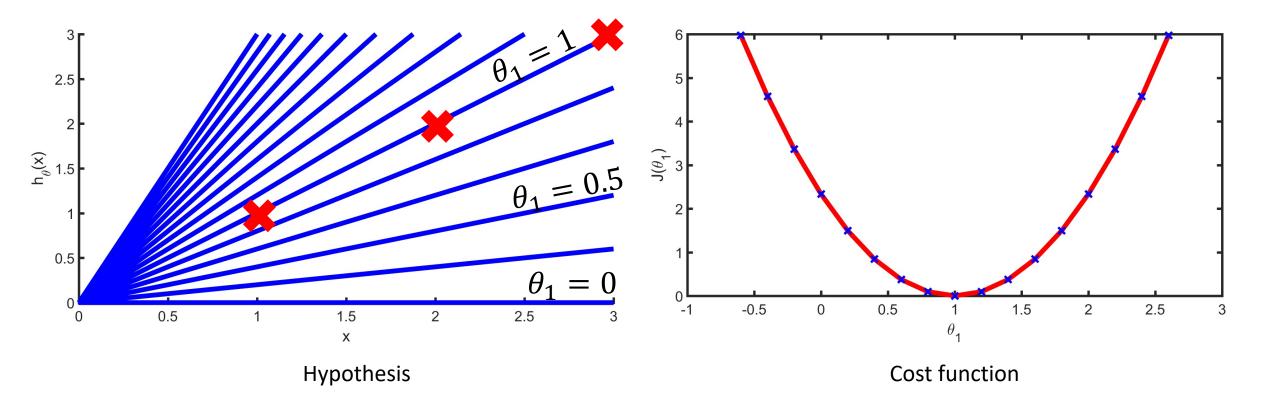
Cost function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

 $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

A powerful and standard tool: Gradient Descent

Part-II: Gradient Descent



Plotting the different hypotheses and cost function values as a function of θ_1

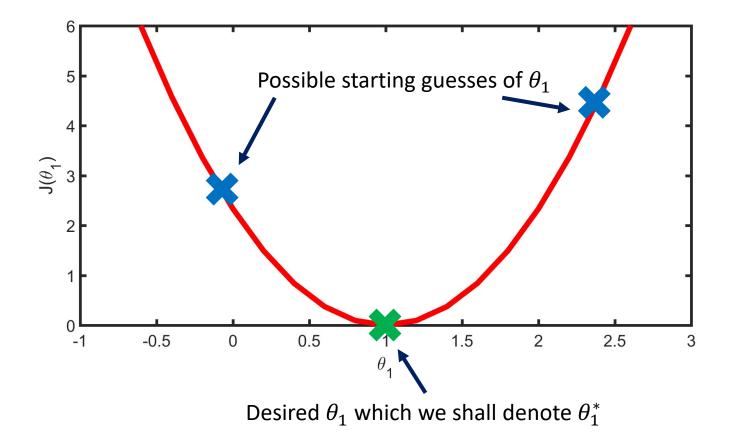
A solution strategy

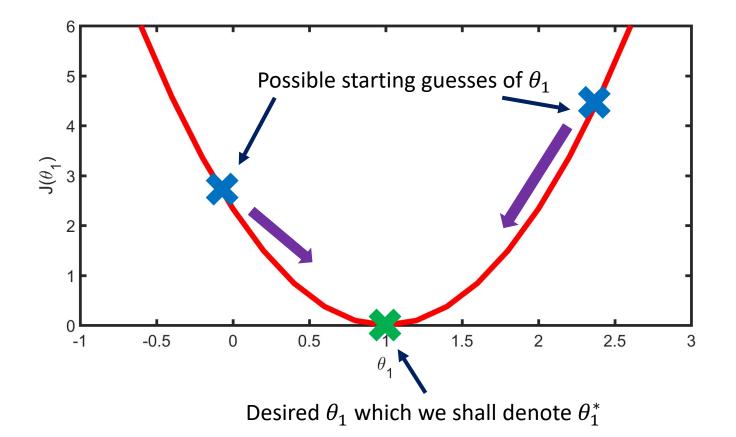
Given a function $J(\theta_1)$:

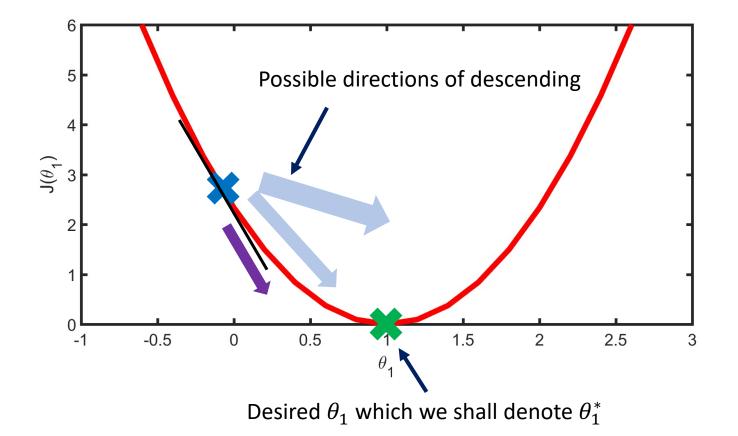
Step 1: Start with some θ_1

Step 2: Update θ_1 such that it reduces $J(\theta_1)$

Step 3: Keep repeating step 2 until we hopefully reach the minimum value of $J(\theta_1)$







A solution strategy

Given a function $J(\theta_1)$:

Step 1: Start with some θ_1

Step 2: Update θ_1 such that it reduces $J(\theta_1)$

Step 3: Keep repeating step 2 until we hopefully reach the minimum value of $J(\theta_1)$

$$\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$

Iteration continues until θ_1 does not change much.

- -- [k] : denotes the iteration number. k = 0,1,2,3,...
- -- $\theta_1^{[0]}$ is our starting value for θ_1
- -- α : Learning rate; a positive number

 $--\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$: Gradient term Created by Souptik Barua (2019) at Rice University

$$\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$

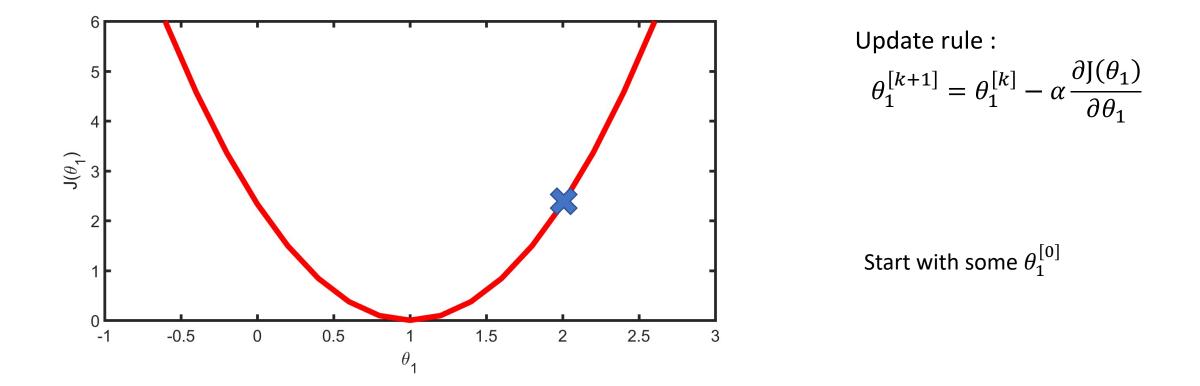
Your current guess of θ_1

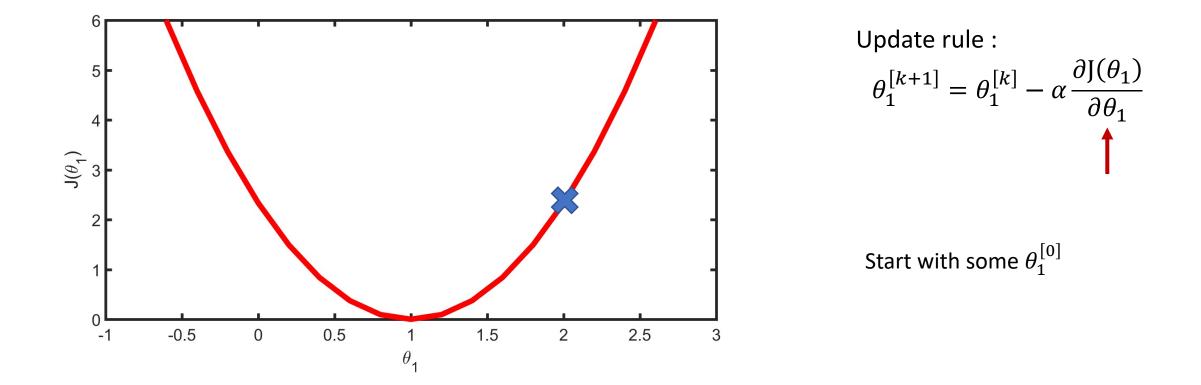
$$\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$

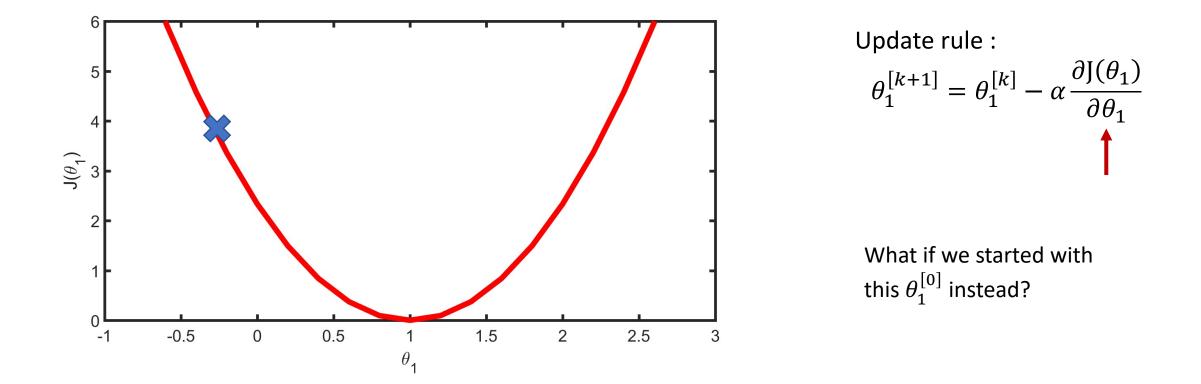
Your current guess of θ_1

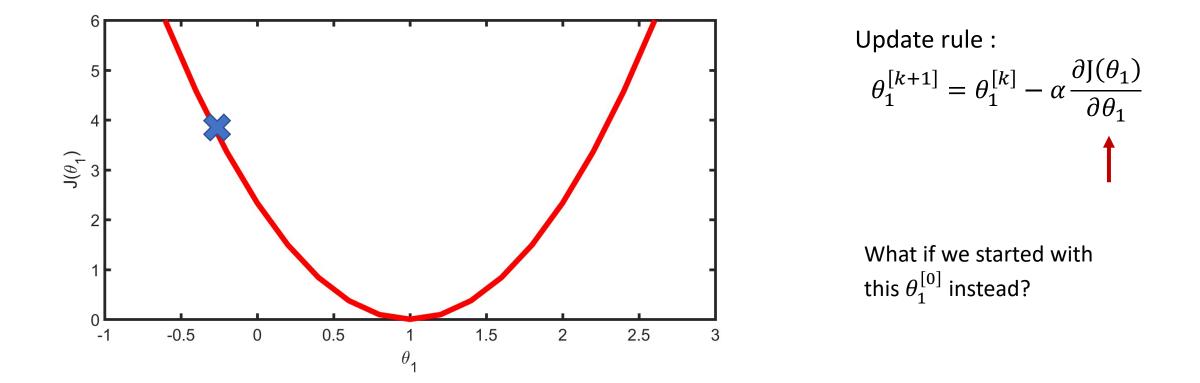
 $\frac{\partial J(\theta_1)}{\partial \theta_1}$: which direction to descend?

 α : *how fast* to descend?





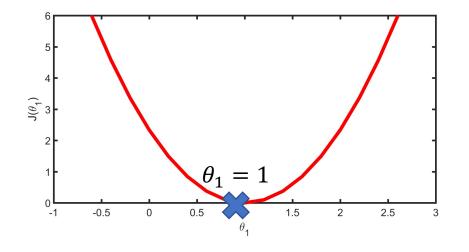




Quiz: Gradient descent intuition

Suppose you're really lucky and your initial guess of $\theta_1^{[0]} = 1$ results in the minimum value of $J(\theta_1)$. Assume $\alpha > 0$. What happens if you apply a gradient descent update here?

$$\theta_1^{[1]} = \theta_1^{[0]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$



 $\theta_1 = 1$ results in the minimum $J(\theta_1)$

(A) No change in θ_1 (B) A random change in θ_1 (C) Increase θ_1 (D) Decrease θ_1

Quiz: Gradient descent intuition

Suppose you're really lucky and your initial guess of $\theta_1^{[0]} = 1$ results in the minimum value of $J(\theta_1)$. Assume $\alpha > 0$. What happens if you apply a gradient descent update here?

$$\theta_1^{[1]} = \theta_1^{[0]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$

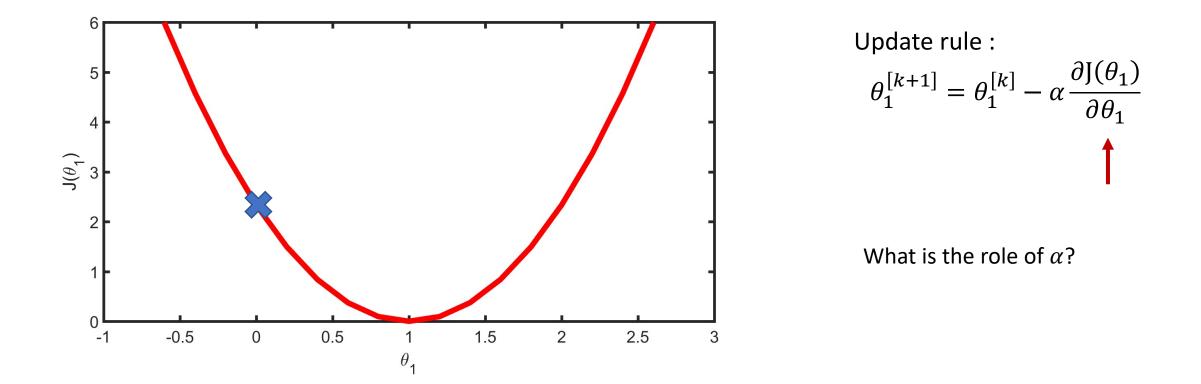
 $\theta_1 = 1$ results in the minimum $J(\theta_1)$

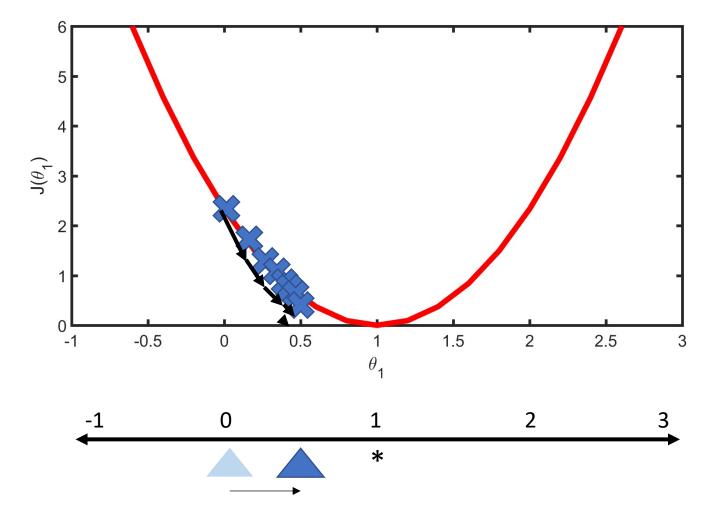
(A) No change in $heta_1$

(B) A random change in θ_1

(C) Increase θ_1

(D) Decrease $heta_1$





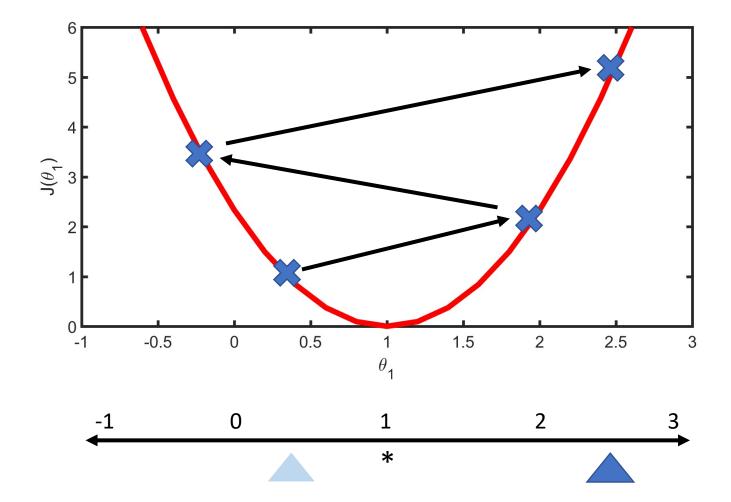
Update rule :

$$\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$$

When α is too **small**;

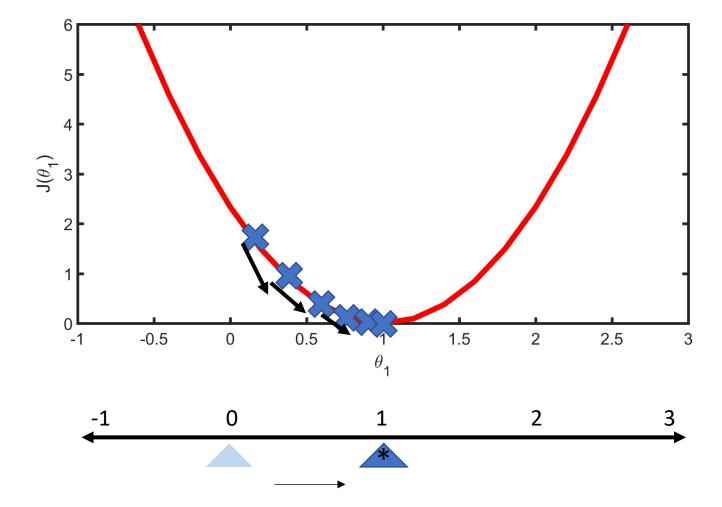
Convergence to θ_1^* can be prohibitively slow

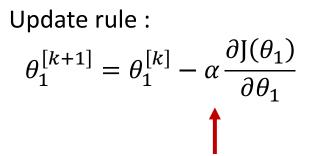
Created by Souptik Barua (2019) at Rice University. All rights reserved. Do not redistribute without permission from the creator. Email: souptikbarua@gmail.com



Update rule : $\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$

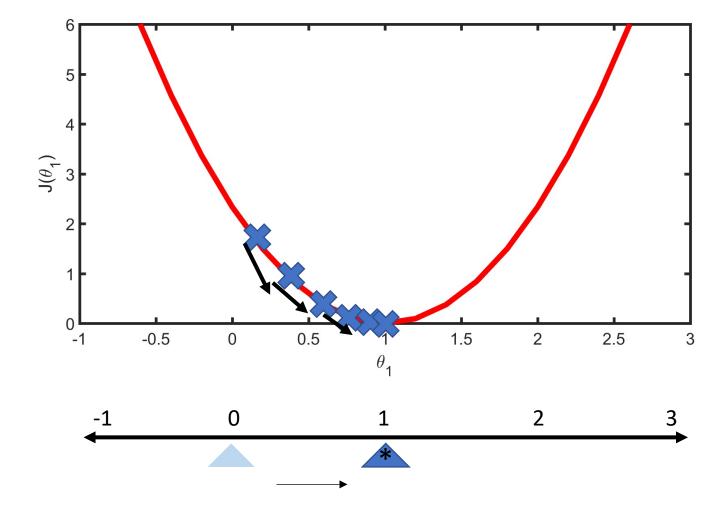
When α is too **large;** Divergence may occur instead of convergence





A good choice of α leads to convergence to θ_1^* in a reasonable amount of time

Created by Souptik Barua (2019) at Rice University. All rights reserved. Do not redistribute without permission from the creator. Email: souptikbarua@gmail.com



Update rule : $\theta_1^{[k+1]} = \theta_1^{[k]} - \alpha \frac{\partial J(\theta_1)}{\partial \theta_1}$

-- For a linear regression cost function, a fixed α works because the gradient value itself tapers off

Created by Souptik Barua (2019) at Rice University. All rights reserved. Do not redistribute without permission from the creator. Email: souptikbarua@gmail.com

A solution strategy

Given a function $J(\theta_0, \theta_1)$:

Step 1: Start with some θ_0, θ_1

Step 2: Update θ_0 , θ_1 such that it reduces $J(\theta_0, \theta_1)$

Step 3: Keep repeating step 2 until we hopefully reach the minimum value of $J(\theta_0, \theta_1)$

An iterative approach to finding the best θ_0, θ_1

$$\begin{aligned} \theta_0^{[k+1]} &= \theta_0^{[k]} - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} \\ \theta_1^{[k+1]} &= \theta_1^{[k]} - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1} \end{aligned}$$

$$\begin{split} \theta_0^{[k+1]} &= \theta_0^{[k]} - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} \\ \theta_1^{[k+1]} &= \theta_1^{[k]} - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1} \end{split}$$

Update θ_0 and θ_1 simultaneously!

-- If you do sequentially, that's a different algorithm called coordinate descent

-- Parallel computation

Quiz: Gradient descent algorithm

Let $\theta_0^{[0]} = 1$, $\theta_1^{[0]} = 2$. For a different problem, it turns out that the update rule should be:

$$heta_j^{[1]} = heta_j^{[0]} + \sqrt{ heta_0 heta_1}$$
 for $j = 0,1$. What are $heta_0^{[1]}, heta_1^{[1]}$?

(A)
$$\theta_0^{[1]} = 1, \theta_1^{[1]} = 2$$

(B) $\theta_0^{[1]} = 1 + \sqrt{2}, \theta_1^{[1]} = 2 + \sqrt{2}$
(C) $\theta_0^{[1]} = 2 + \sqrt{2}, \theta_1^{[1]} = 1 + \sqrt{2}$
(D) $\theta_0^{[1]} = 1 + \sqrt{2}, \theta_1^{[1]} = 2 + \sqrt{2}(1 + \sqrt{2})$

Quiz: Gradient descent algorithm

Let $\theta_0^{[0]} = 1$, $\theta_1^{[0]} = 2$. For a different problem, it turns out that the update rule should be:

$$heta_j^{[1]}= heta_j^{[0]}+\sqrt{ heta_0 heta_1}\,\, ext{for}\,j=0,1$$
 . What are $heta_0^{[1]}, heta_1^{[1]}$?

(A)
$$\theta_0^{[1]} = 1, \theta_1^{[1]} = 2$$

(B) $\theta_0^{[1]} = 1 + \sqrt{2}, \theta_1^{[1]} = 2 + \sqrt{2}$
(C) $\theta_0^{[1]} = 2 + \sqrt{2}, \theta_1^{[1]} = 1 + \sqrt{2}$
(D) $\theta_0^{[1]} = 1 + \sqrt{2}, \theta_1^{[1]} = 2 + \sqrt{2}(1 + \sqrt{2})$

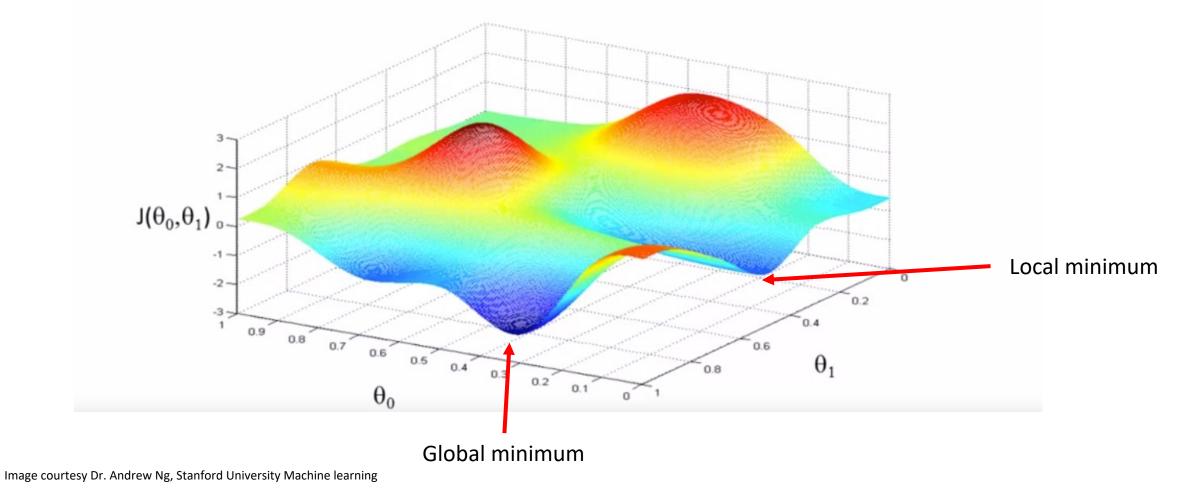




Image courtesy Dr. Andrew Ng, Stanford University Machine learning

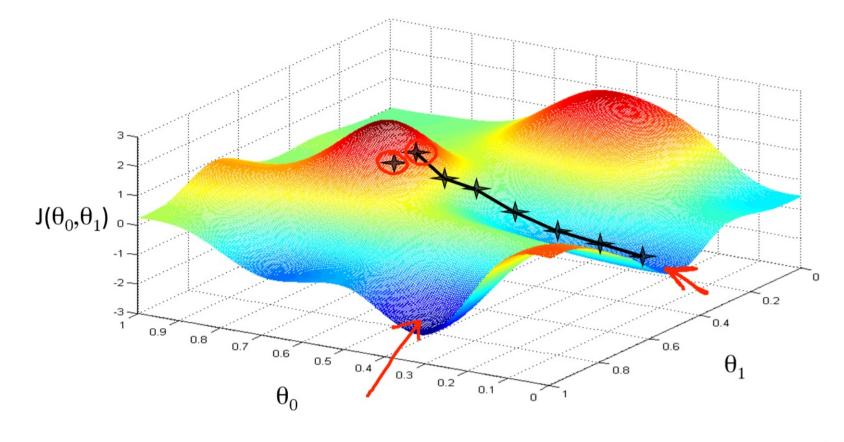


Image courtesy Dr. Andrew Ng, Stanford University Machine learning

Designing a gradient descent framework

Given a function $J(\theta_0, \theta_1)$:

Step 1: Start with some θ_0, θ_1 *It's an art. Try multiple random initializations.*

Step 2: Update θ_0 , θ_1 such that it reduces $J(\theta_0, \theta_1)$

Computing the *derivative* is important! A varying α can help!

Step 3: Keep repeating step 2 until we hopefully reach the minimum value of $J(\theta_0, \theta_1)$

Either fix maximum iterations or set a threshold on % change per iteration

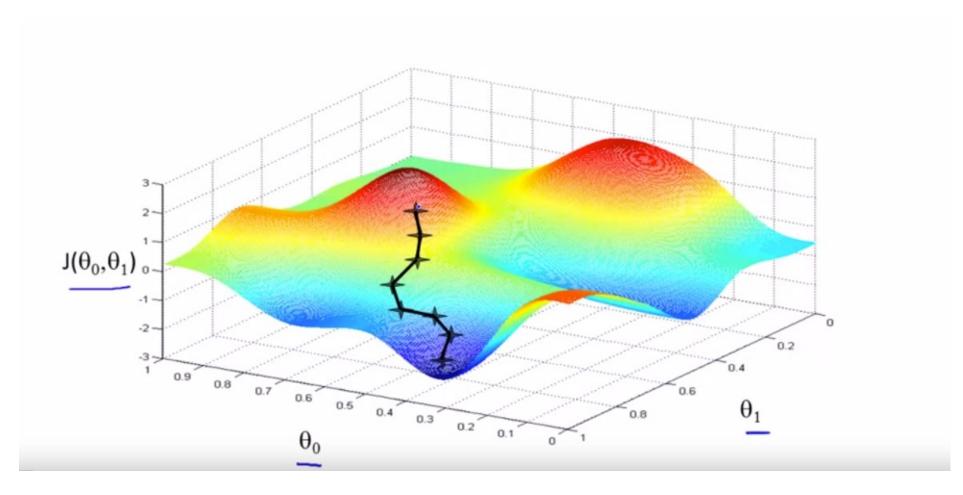


Image courtesy Dr. Andrew Ng, Stanford University Machine learning

Which of the following statements are true regarding gradient descent?

- 1. To make gradient descent converge, we must always decrease α with time
- 2. Gradient descent is guaranteed to find the global minimum for any cost function $J(\theta_0, \theta_1)$
- 3. Gradient descent can converge if α is fixed (But α shouldn't be too large, else there is divergence)
- 4. For the linear regression cost function, local and global minimum are one and the same

(A) 1 and 4

(B) 3 and 4

(C) 1 and 2

(D) 4

Which of the following statements are true regarding gradient descent?

- 1. To make gradient descent converge, we must always decrease α with time
- 2. Gradient descent is guaranteed to find the global minimum for any cost function $J(\theta_0, \theta_1)$
- 3. Gradient descent can converge if α is fixed (But α shouldn't be too large, else there is divergence)
- 4. For the linear regression cost function, local and global minimum are one and the same

(A) 1 and 4

(B) 3 and 4

(C) 1 and 2

(D) 4

The Normal equation

 $\theta^* = (x^T x)^{-1} x^T y$

There is a direct, mathematical way to obtain the 'best' $\theta = [\theta_0, \theta_1]$ using one equation

x: Area in square feet	y: Price (x1000) in \$
2104	399
1600	329
2400	369
1416	232
3000	539
	•••

The Normal equation

There is a direct, mathematical way to obtain the 'best' $\theta = [\theta_0, \theta_1]$ using one equation

 $\theta^* = (x^T x)^{-1} x^T y$

Why, then, don't we use that instead of gradient descent?

- -- Computational cost when number of predictors is very large
- -- Sparse data (when most of the predictors are zero)
- -- Collinear predictors

Learning outcomes - II

By now, you know:

-- Gradient descent is an iterative algorithm that is a standard tool for minimizing cost functions

-- Involves choosing a starting guess for θ , updating θ using a learning rate α and a gradient term $\frac{\partial J(\theta)}{\partial \theta}$, and continuing to update until we reach the solution

- -- Why gradient descent converges to a local minimum of the cost function if α isn't too large
- -- Effects of a too small or too large α
- -- Gradient descent for general cost functions

-- The normal equation is an alternative approach to finding the linear regression model, albeit with a high memory requirement